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EVALUATION

The objective of this effort was to design and develop a narrowband

voice transmission capability to operate in conjunction with Tactical
Command and Control Communications for use on the FACP Speech Recognition/
Transmission System. The feasibility of transmitting compressed speech
data at rates lower than 200 bits per second has been demonstrated. This

work is in support of TPO 3B.
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Project Engineer
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1. INTRODUCTION
The objective of the research effort was to design and develop

a narrowband voice transmission capability to operate in conjunc-
tion with Tactical Command and Control Communications, for use on

the FACP Speech Recognition/Transmission system.

To achieve this objective, SDC developed a phoneme vocoder (voice
coder), capable of transmitting compressed speech data over band-
limited communication channels at rates lower than 200 bps. This
low bit rate is possible because the incoming speech signal is
coded by an analyzer into a sequence of a relatively small number
of discrete sound units, or phonemes, which carry maximum

phonological information.

At the receiving end of the communication channel, the phoneme
sequence is input to a digital speech synthesizer which trans-
forms the sequence into acoustic speech parameters. Much of the
SDC research effort has focused on defining the complex trans-
formations needed to convert phoneme strings into intelligible
i speech. 1In particular, SDC has developed an area function dyad

synthesizer based on area functions which model the changing

shape of the vocal tract during speech production.

This report includes background on speech/analysis systems,
descriptions of the SDC analyzer and area function dyad synthe-
sizer, discussion of phoneme discriminability tests and results,

and recommendations for future research.




2. BACKGROUND

Various approaches to analysis/synthesis systems have been
reviewed elsewhere [Flanagan 1965, Schroeder 1966, Gold 1977]
and will be only briefly discussed here.

The simplified model of speech production used in almost all
analysis/synthesis systems assumes that the vocal tract is a
non-uniform acoustic tube not coupled with the nasal cavity.
The excitation function is separated from the vocal tract trans-
fer function which is considered as a slowly time-varying linear
filter. Many vocoder systems also assume that excitation is

periodic or noiselike, but not both.

In general, at the ‘transmission end of a vocoder system, the
analyzer must determine whether the excitation is periodic or
noiselike (voicing detection), estimate the fundamental frequency
of the periodic excitation (pitch extraction), and estimate the
spectral envelope representing the vocal tract shape. Because of
the non-stationary properties of speech, analysis is usually done

on a frame-by-frame basis.

At the receiving end, the synthesizer must reconstruct the
spectral information and apply the appropriate excitation func-
tion to produce intelligible speech which has a spectrum

approximating the spectrum of the original speech.

The channel vocoder, originally developed in the 1930's, uses a
bank of band pass filters, rectifiers and low-pass filters to
estimate the short-time amplitude spectrum [Dudley 1939, Gold and
Rader 1967]. At the receiver, appropriate excitation is applied
to a corresponding bank of band pass filters and modulators to
reconstruct a short-time spectrum approximating that of the
original speech. Typical present day implementations of channel
vocoders require about 2400 bps for transmission of reasonable

quality speech.




Another currently popular class of vocoders is based on linear
predictive coding (LPC) which assumes that a sample of a speech
waveform can be predicted as a linear weighted sum of previous
samples [Saito and Itakura 1966, Atal and Schroeder 1967, Atal
and Hanauer 1971, Makhoul 1975, Markel and Gray 1976]. In LPC

vocoders, linear prediction coefficients are extracted for each

frame of speech data to obtain an inverse model of the speech
spectrum. Voicing parameters, pitch and gain are also computed.
At the receiver, an excitation signal is constructed from the
voicing and pitch information and drives a synthesis filter
corresponding to the inverse of the analysis model. The gain
function is used to match the energy of the synthetic speech to
that of the original speech. Very high quality speech can be

i obtained down to about 3,300 bps, with some degradation down to
about 1,400 bps, and complete degradation below 1,400 bps
[Markel and Gray 1976].

Other types of speech encoding-decoding systems include formant
vocoders [Flanagan et al. 1962], maximum likelihood vocoders
[Itakura and Saito 1968], and homomorphic vocoders [Oppenheim
1969]. In general, these systems require data rates of several

thousand bps for acceptable quality.

SDC has attempted to significantly reduce the required bandwidth
for intelligible speech transmission by coding the acoustic
parameter output of the analyzer in terms of phonemes, i.e., the
alphabet of distinctive speech sounds of a language. Spoken

English can be described by a set of about 48 phonemes which can

be encoded in 6 bits. If quantized pitch (3 bits) and duration |
{2 bits) for each phoneme are included, then each phoneme can be |
represented by 11 bits. For an average speaking rate of 12

phonemes per second, a transmission rate of 132 bps is possible.

In such a phoneme vocoder, the analyzer must not only extract

relevant acoustic parameters from the speech signal, but must

also classify the parameters into a sequence of sound

3




segments with accurate phoneme labels. The synthesizer must
accept a phoneme string as input, and generate corresponding
acoustic parameters.

In the SDC phoneme vocoder, the analyzer uses linear prediction
for spectral analysis and a fast frequency domain pitch algorithm
for fundamental frequency estimation [Gillmann 1975]. The
analysis procedures and segmentation and labeling schemes are
described in detail in Section 3.

The synthesizer is based on an area function model which
represents the vocal tract as a set of 14 cross-sectional areas.
A 48 x 48 table describes 14 cross-sectional areas for each of
the 48 phonemes. The steady states (nuclei) of each phoneme are
represented down the main diagonal of the table, and the transi-
tion states (dyads) between any ordered pair of phonemes are the
off-diagonal entries. Given a phoneme string as input, the
synthesizer selects the corresponding sequence of nucleus and
dyad entries from the table and interpolates between each of 14
cross-sections, producing a model of the shape of the vocal tract

changing in time.

It has been shown that the filtering process of this vocal tract
model is identical to the optimum inverse filter of linear
prediction analysis [Wakita 1972], thus allowing direct conver-
sion to LPC synthesis from the vocal tract model. The

synthesizer is described in greater detail in Section 4.

[ TRV S ——




3. ANALYSIS

3.1 The A-Matrix
The analyzer, running on a Raytheon 704 minicomputer, is based

on an acoustic-phonetic processor developed by SDC during an
extensive research and development program in speech understand-
ing research [Bernstein 1975, Ritea 1975]. The analyzer accepts,
digitizes and records speech input in real time. Subsequent
processing in non-real time extracts acoustic parameters for each
10 msec. segment of speech, such as fundamental frequency and
formant frequencies and amplitudes, and uses these parameters to
assign a sequence of phoneme labels to the speech. The para-
metric information and phoneme choices are stored in the A-matrix,
summarized in Table 3-1. The components of the analyzer are

shown in Figure 3-1.

Input speech is low-pass filtered and digitized at a rate of
20,000 samples per second by a 12-bit analog-to-digital

converter.

A smoothed root mean square (RMS) energy value is then calculated

for each 10 msec. frame of speech and silence areas are marked.

3.2 Fundamental Frequency Estimation
Fundamental frequency (F0), (or pitch), is estimated using a fast
frequency domain pitch algorithm developed by Gillmann [1975],

which operates in three phases:
1. Down-sampling. A digital filter is used to down-sample
the digitized speech from 20,000 to 2,000 samples per
second, to remove frequencies that lie outside the range

of possible fundamentals and thus reduce computation

time.




Table 3-1. A-Matrix Contents

Rough labels: silence, sonorant, unvoiced, etc.
Smoothed RMS

FO: pitch track

Voicing indicators: fry, falsetto, sporadic, etc.
Fl-4: formant frequencies and amplitudes

Formant discontinuity indicators

F2: direction-of-change indicator

LPC amplitudes: first point, first two peaks
Energy functions: sonorant, low-frequency, edge-frequency
Sonorant indicators: retroflex, lateral, nasal
Boundaries: phone, syllable, phrase

Phrase type: falling, rise-fall, etc.

Vowel stress

Rate of speech

Slope change count

FRIC/PLOS indicators: closure, (voiced) burst, spectral tags,

Phone labels and scores




ABATRIX

SPEECH

RECORD

J

PITCH TRACKER -

i

RMS CALCULATION

SILENCE DETECTOR

LPC CALCULATION

]

o PEAK PICKER

1

FORMANT TRACKER

1

SLOPE CHANGE
* CALCULATION <

DIP DETECTOR

1
VOWEL AND SONORANT

- SEGMENTATION
AND LABELING

\

FRIC/PLOS
SEGMENTATION -

AND LABELING

}

SYLLABLE AND PHRASE BOUNDARY MARKER

- VOWEL STRESS CALCULATION
RATE-OF SPEECH CALCULATION

1

LABEL SMOOTHER

Figure 3-1. Analyzer

HJ114S G3Z111910




25 AMutocorrelation and pitch extraction. An autoceorrelation

spectrum with a window size of 50 msec. is taken cvery
10 msec. The autocorrelation technique was chosen
because, for pitch estimation, it is the fastest
spectrum to compute. The procram was developed from an
autocorrelation pitch tracker devised by Skinner [1975].
An algorithm examines the spectra and picks pcaks from
them. Octave errors, i.e., mistaking a harmonic or sub-
harmonic for the fundamental, are avoided by comparing
the currently found pcak value to a cumulative average
of all the peak values previously calculated for the
utterance. To reduce frequency quantization caused by
the low sampling rate, a parabola is fitted to the
selected peak, and the theoretical peak of this parabola
is used as the FO value.

3. Editing. The FO values obtained arc passed through a
three-point median smoother to climinate anomalous
values, and then a heuristic pitch track editor attempts
to remove any remaining errors. The pitch algorithm is
also a voicing detector in that cach 10 msec. frame 1is
labeled voiced if a non-zcro pitch value is assianed to
it, and unvoiced if a zero pitch value is assigned. The
fundamental frequency contour found by the pitch algce-
rithm for the utterance "The U.S. has Lafayettes" is

shown in Figure 3-2.

3.3 Spectral Analysis

Spectral analysis is performed by taking autocorrelation LPC
spectra at 10 msec. frames over the utterance, using 24 predictor
coefficients and a 25.6 msec. Hamming window. LPC speech proc-
essing techniques assume that vocal triact resonance characteris-

tics of voiced speech can be modeled I an all-pole filter of the

form
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k=1
The peaks of the spectrum correspond to the poles of A(z) and

closely approximate the formai* frequencies of voiced sounds
[see, e.g., Markel 1971, Markel, Gray, Wakita 1973].

For each frame, peak-picking procedures find up to five frequency
peaks under 5 KHz. If an isolated large-bandwidth peak is found,
an off-axis spectrum is calculated to try to resolve the broad
peak into two peaks. If the total number of peaks found is
greater than five, an off-axis spectrum is calculated to elim-

inate extraneous inflection points.

A formant tracker developed by Kameny, Brackenridge and Gillmann
[1974] uses the spectral peaks to assign frequency values to the
first three formants (F1-F3) on the basis of time constraints and
formant minima and maxima obtained from speaker-dependent vowel
and sonorant tables. A fourth formant (F4) is also calculated
and used when needed to disambiguate among choices for F1-F3.

The formant tracker first establishes anchor areas in which F1-F3
labels can be assigned unambiguously. It then attempts to extend
the F1-F3 tracks to the left and right of the anchor areas, as
long as links to unambiguous peaks can be made. If there are
missing or extra peaks, the formant tracker then uses slope
information based on formant movement from the anchor (either to
the right or to the left) to select the peak location that best
fits the formant slope and is also consistent with adjacent peaks.
Finally, smoothing is performed to adjust for discontinuities.

10




Following the formant-tracking pass, the number of slope changes
(in the digitized speech) per 10 msec. frame is calculated and
dip areas are marked using an algorithm similar to that described
by Weinstein et al. [1975]. Dip information is used to enhance
detection of plosives, nasals, and flap gestures as well as
boundaries. Figure 3-3 graphically shows the results of
processing an utterance to this point.

3.4 Phoneme Segmentation and Labeling
Two distinct algorithms are used for segmentation and labeling,

one for classification of vowels and sonorants, and one for
fricatives and plosives. The English vowels and sonorants,
listed in Table 3-2, are voiced sounds made with relatively
unobstructed passage of air through the vocal tract, and are
characterized by fairly clear formant patterns. Fricatives,

on the other hand, are made with air passing through a constric-
tion, causing turbulence. Plosives are characterized by complete
closure followed by a burst. The fricatives and plosives of

English are shown in Table 3-3.

The segmentation and labeling techniques can use up to three
levels of labels: (1) phoneme symbols as shown in Tables 3-2
and 3-3, (2) feature bits indicating phonetic modifications

such as nasalization and retroflexion, and (3) rough labels

indicating broad categories such as "voiced" or "vowel."

Vowel-sonorant analysis
For vowel-sonorant identification [Kameny 1976], F1-F3 values

are converted to linear scale values that correspond to scaled
values in speaker-dependent vowel-sonorant table. Phoneme
labeling is done on the basis of linear distance, so that a
movement of n units in any formant is equivalent to a movement
of n units in another formant.

11
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Table 3-2., Vowels & Sonorants
Phoneme Machine Representation Example
i IY beat
I IH bit
e EY bait
€ EH bet
4 - AE bat
Q AA Bob
A but
: > RO bought
o ow boat
U UH look
u uw boot
] AX about
3 IX roses
3 ER bird
au AW down
al AY buy
oI oy boy
y Y you
w W wit
r R rent
1 L let
m M met
n N net
n NX sing
[ WH which
1 EL battle
™ EM bottom
n EN button
; DX batter




Table 3-3. Fricatives & Plosives

Example

Phoneme Machine Representation
p P
t 7
k K
b B
d D
g G
h HH
£ F
¢} TH
? s S
| SH
v v
3 DH

N
N

3 ZH
(> CH
J JH

14

pet
ten
kit
bet
debt
get
hat
fat
thing

sat

shut
vat
that
200
azure
church

judge




Segmentation begins by locating phoneme nuclei in areas that are
voiced, have Fl-F3 values, do not contain local RMS energy dips,
have slope-change counts below a threshold, and are at least 40
msec. long. Within such a voiced area, the nucleus finder first

\ locates the frame(s) of peak RMS energy. It also calculates the
absolute first-difference in scaled F1l-F3 values in adjacent
frames, and if this value exceeds a threshold, no nucleus is
found because formant frequencies are changing too rapidly to
define a steady-state. If the values lie below a threshold, the
frame with the minimum difference is chosen as the nucleus. If
there are several such frames, the one closest to the RMS peak
is selected.

Segment boundaries are defined by moving in both directions from
the nucleus until scaled Fl, F2 or F3 values for more than a ]
single frame differs from that of the nucleus by more than a

threshold, or until a previously defined boundary of an adjacent

segment is found.

Label choices and scores are determined by computing linear
distances from scaled F1-F3 values of the unknown nucleus to
values for each vowel and sonorant stored in the speaker table.
The labels of the first four closest matches below a threshold
are chosen, along with scores which are the linear distance
between the F1-F3 values of the nucleus and the F1-F3 values of q
the selected stored targets. Contextual information, such as
the possible influence of an adjacent nasal or retroflex sound,

are taken into account in selecting labels.

Fricatives and plosives

The fricative and plosive algorithm [Molho 1976] uses the
autocorrelation method of linear prediction for spectral analysis,
but with only 8 coefficients and a narrower (6 msec.) Hamming
window than used in vowel-sonorant identification. Parameters

extracted from the spectra are:

15




FRL: lowest frequency peak

FRS: second-lowest frequency peak

DBM: maximum spectral amplitude

SHR: a sharpness measure of FRL

FRA: a measure of spectral skew

BFRL: a bit which is set if the amplitude of the FRL is
within 6 dB of DBM

BFRS: a corresponding bit for the FRS peak

Parameters are extracted for every unvoiced 10 msec. frame, and
also for frames where there is transition into and out of
voicing, a missing first formant, a zero-crossing count exceeding
a threshold in a voiced area (typical of voiced strident
fricatives such as /z/), or indication of an unexplained energy
dip pattern determined by the vowel-sonorant analysis.

A fricative segmentation process groups together unvoiced frames
on the basis of frame-to-frame stability constraints on param-
eters DBM and FRA, and tries to assign preliminary phoneme labels
S, SH and/or HH on the basis of average parameter values within
the group.

At this point segments are merely concatenated groups with the
same label, and some segments or parts of segments may overlap
and have up to three labels. Duration rules are applied to
remove obviously mislabeled short segments, and remaining seg-
ments are assigned preliminary labels and scores.

Plosives are now segmented, with the frame having the minimum
DBM used as a reference for identifying silence in the utterance.
A burst-marking routine identifies up to four non-silent frames
preceded by silence as potential plosive bursts. A closure
algorithm compares F1l motion in the vicinity of unvoiced areas
to a hypothetical linear formant transition between surrounding
vowel nuclei, and oral closure is identified if F1l is

16




sufficiently low. Parameters for plosive bursts are then
examined, including spectral parameters up to 40 msec. after
burst onset, voice onset time, F2 and F3 values at voice onset,
and contextual information such as existence of adjacent S.
Plosives are then labeled and scored on the basis of patterns
of burst parameters, and plosive aspiration originally labeled
as HH by the fricative analysis is removed.

Final fricative labels and scores are now assigned on the basis
of adjacent voicing, oral closure, duration, and the previously

determined contextual information.

3.5 Prosodic Analysis and Label Smoothing

In addition to phoneme segmentation and labeling, prosodic
characteristics such as pitch contours, linguistic stress,

rate of speech, and syllable and phrase boundaries are determined.
Pitch contours at phrase and utterance boundaries are labeled as
falling, rising, rise-fall, etc. Intensity, duration and pitch
are used to determine levels of vowel stress. Rate of speech is
caleulated using a 1 second window. A "convex hull" algorithm
based on a loudness function is used to locate syllable and

phrase boundaries [Mermelstein 1975].

On its final pass the analyzer makes a "best" label choice for
each 10 msec. frame of speech and enters it in the A-matrix.
These labels are then corrected by a symbolic smoothing algorithm.
An example of a portion of a final A-matrix is shown in Figure
3-4,

17
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Figure 3-4. Portion of the A-Matrix for the Utterance

"What is the speed of 1t?"
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4. SYNTHESIS

During the development of the SDC phoneme vocoder, much of the
research focused on design and implementation of an area function
dyad synthesizer based on interpolation of the pre-stored cross-
sectional areas of the vocal tract. Some modifications were

also made to an existing digital simulation of a terminal analog
; synthesizer involving manipulation of acoustic parameters by

rule.

4.1 Area Function Dyad Synthesis

The area function approach to synthesis is based on an acoustic
tube model of the vocal tract directly derivable from the speech

waveform given the following assumptions [Atal and Hanauer 1971,
Wakita 1972]:

1) Although the vocal tract is a non-uniform tube, it can
be adequately represented as a set of M connected
cylindrical sections of equal length, each section
having uniform cross-sectional area.

2) Sound propagation through each area can be treated as a
plane wave, and assumptions associated with elementary
wave propagation are valid.

3) Sections are rigid and losses due to factors such as
wall vibration or viscosity can be ignored.

4) The model is linear and not coupled to the glottis,
and does not consider effects of the nasal cavity.

Atal [1970] has shown that formant frequencies and bandwidths
are sufficient to uniquely determine the areas of an acoustic
tube made up of a specified number of sections, and demonstrated
that a transfer function with M poles can always be realized as

the transfer function of an acoustic tube of M cylindrical
sections. Wakita [1972] showed that the filtering process of
the acoustic tube model of the vocal tract is identical with the
optimum inverse filter of linear prediction analysis. This

T

means that the reflection coefficients, which uniquely define
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the area ratios of the acoustic tube model, can be obtained
directly by linear prediction analysis, and therefore vocal
tract shapes can also be estimated directly.

From the point of view of synthesis, it means that given a
specified vocal tract shape, a corresponding LPC synthesis filter
can be easily constructed. This fits well into a phoneme vocoder
scheme, because phoneme choices which are the output of the
analyzer can be associated with distinctive vocal tract shapes

in the articulatory domain.

An important advantage of using area functions for phoneme
synthesis is that cross-sectional areas of the vocal tract can

be assumed to vary in a relatively slow and continuous way in
time because of the dynamics of the tongue and other articulators.
Therefore, interpolation of pre-stored areas should yield a
better representation of speech production than interpolation of
other pre-stored filter parameters such as LPC parameters or
reflection coefficients. Experiments showed that synthetic
speech produced by interpolation of LPC parameters and of
reflection coefficients was characterized by popping and clicking
sounds, indicating abrupt discontinuities. Therefore, synthesis
based on area functions was selected.

The area function synthesizer can be viewed as an nxn dyad
table describing M representative cross-sectional areas of the
vocal tract for each of n phonemes. The steady states, or
nuclei, of the phonemes are the main diagonal entries, and
transition states between any ordered pair of phonemes, or
dyads, are the off-diagonal entries. For example, in the 2x2
table shown in Figure 4-1, IY and T are phoneme names, diagonal
entries IYIY and TT are nuclei, and IYT and TIY are transitions.
Stored for each nucleus or transition are 14 cross-sectional
areas, Al-Al4, specifying a representative vocal tract shape.

20
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Phoneme

Symbols 1Y T
Iy Al-Al4|Al1-A14
T Al-Al4|Al1-Al14

Figure 4-1. Example of a Two Phoneme Dyad Table

The current version of the synthesizer uses M=14 cross-sectional
areas and n=48 phonemes. However, any one or two character
symbol can be entered in the table as the name of a sound unit,
so that more detailed phonetic units can be used in addition to
the standard phoneme alphabet.

The set of area functions which represents a nucleus or
transition is selected manually from analysis of citation words
recorded by a single male speaker. A linear prediction analysis
is performed on the digitized utterances and 14 cross-sectional
areas calculated for each 10 msec. frame of speech. Figure 4-2
shows the area functions for the word "gob." Areas of sections
closer to the glottis are graphed close together because they
contribute relatively little to distinctive vocal tract shape.
Areas of sections closer to the lips are graphed further apart
so that changes in area can be more clearly seen.

Speech frames which represent steady states or transitions, such
as those marked in Figure 4-2, are chosen using a combination of
listening and inspection of the area functions and corresponding
waveform, available through an interactive speech laboratory
facility. The name of the nucleus or transition (e.g., IYIY or
IYT) is entered into the dyad table along with the set of area
functions Al-Al4 corresponding to the selected frame. The name
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of the utterance from which the speech frame was picked can also
be entered for future reference.

In general, steady state vowel nuclei are chosen from contexts
which have minimal phonetic influence on the vowel, such as
stressed /h_d/ syllables. Single representative steady states
of some consonants are almost impossible to characterize,
however, as in voiceless aspirated plosives which are made up
of both silence and burst portions. To handle such cases, the
original dyad table, with a single speech frame representing
each nucleus and a single frame representing each transition,

was modified to handle more information between frames.

The present version of the dyad table now allows for
specification of up to three points (i.e., speech frames) for
each transition: the center of the transition, a point midway
between the center of the transition and the preceding nucleus,
and a point midway between the center of the transition and the
following nucleus. Viewed another way, from the point of view of
the nu®leus, each phoneme in context can be represented as a
nucleus, entering 1/4 point, following 3/4 point, and transition:

nuc

1/44 v $
4

For synthesis, combinations of these points can be selected in
binary according to the following scheme.




RITNE R TR NS TP LR T W Ler T LeNy ¥

1/4 Point Nucleus 3/4 Point Transition

0 0 0 1 = 1
0 0 1 0 = 2
0 0 1 1 = 3
0 1 0 0 = 4
0 1 0 1 = 5
0 1 1 0 = 6
0 1 1 1 = 7
1 0 0 0 = 8
1 0 0 1 = 9
1 0 1 0 = 10
1 0 1 1 =" 11
1 1 0 0 = 12
1 1 0 1 = 13
1 1 1 0 = 14
1 1 1 1 =. 15

Tests and evaluations presented in this report are based on
synthesis version 15, using all points. Informal listening

tests of a section of the Rainbow Passage synthesized under all
15 different conditions suggest that version 11 (all transitional
information and no nucleus) and version 15 (all transitional
information plus nucleus) produce better synthetic speech than
the other versions, as might be expected.

It should be noted here that although the terms phoneme, nucleus

and transition are being used here to describe the general case,
the inventory of one and two character alphabetic symbols that
can be used in the dyad table is potentially large enough so
that considerable phonetic detail can be specified. For example,
a plosive might be described as a silence segment and a burst
segment, and each segment might have a nucleus and a 3-point
transition.

As part of a phoneme vocoder, the current version of the area
function dyad synthesizer receives as input a sequence of triples
corresponding to a sequence of phonemes which is the output of
the analyzer. The first element of each triple is the phoneme
name, one or two alphabetic symbols. The second element of the
triple is the duration of the phoneme in 10 msec. segments, and
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the third element is a fundamental frequency value in Hertz.

An optional fourth element, the LPC gain factor is also available,
but is not used in the work reported here. A sample sequence of
triples for the word "gob" might be

SI 10 0
G 11 115
AR 27 108
B 17 110
SI 10 0

where SI stands for a silence interval at the beginning and end
of the word.

Taking the phonemes pairwise, the synthesizer retrieves
appropriate area function parameters from the dyad table, four
sets of parameters per dyad. For example, for the dyad Gaa,
stored parameters for a G nucleus, a GAA transition, and a point
on either side of the GAA transition would be retrieved.

A cubic spline interpolation scheme [Akima 1970] is used to
generate a full set of area function parameters for the
utterance. An appropriate gain contour is generated by rule
[Olive 1977]. These parameters can then be used for LPC
synthesis.

A graph of the interpolated area functions produced from the
transcription given above is shown in Figure 4-3.

4.2 Terminal Analog Synthesis

A digital simulation of terminal analog synthesis [Klatt 1972,
1977] was also tested as a component of the phoneme vocoder. A
set of control parameter time functions defined by a sequence
of phonemes is used to generate a synthesized speech waveform.
Vowels, sonorants and nasals are synthesized by resonators
connected in cascade, and other sounds are produced by formant
resonators in parallel. The synthesizer includes components
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which simulate different sound sources, the vocal tract transfer
function and sound radiation from the head.

Modifications were made to the existing terminal analog
synthesizer to include improvements by Klatt [1977], and to
make it compatible with the output of the phoneme vocoder
analyzer. Modules generating pitch and duration by rule were
removed, as actual pitch and duration is transmitted by the
vocoder. Control parameters suggested by Klatt, such as formant
bandwidths and nasal zeroes, were added.

Final tuning of the updated synthesis has not been completed,
and some work on system interface remains to be done.




5. TESTING

The SDC phoneme vocoder was tested by Dynastat, Inc., using

the Diagnostic Rhyme Test (DRT), a two-choice test of consonant
discriminability [Voiers, et al. 1973]. The primary purpose of
the DRT is to use a panel of listeners to detect specific defi-
ciencies of voice communication systems in transmitting six basic
attributes of consonant phonemes: voicing, nasality, sustention,
sibilation, graveness, and compactness.

In terms of speech production, the presence or absence of the
voicing attribute is determined by whether the vocal folds are
vibrating or not, i.e., whether the excitation is periodic or
noiselike. The nasality attribute distinguishes sounds made by
air passing through the nasal cavity from sounds made by air
passing only through the vocal tract. The sustention attribute
distinguishes sounds made with sustained passage of air from
those made with brief complete closure of the vocal tract. The
sibilation attribute distinguishes sounds characterized by strong
turbulence and noise-like behavior from those with less turbu-
lence and greater periodicity. The graveness attribute distin-
guishes sounds articulated at the extreme front of the mouth from
those made in a more retracted position. The compactness feature
distinguishes sounds articulated toward the back part of the
mouth from sounds articulated toward the front. In the taxonamy
used in the DRT, combinations of these attributes are sufficient
to differentiate among the consonant phonemes of English.

The sets of word pairs which represent the corpus of 96 stimulus
words for the DRT test are shown in Table 51, grouped accofding
to attribute. With minor exceptions, the initial consonants of
the words in each pair differ only in terms of presence vs.
absence of the attribute. Twenty experimental words from
Dynastat are also included on each test, for a total of 116 |
items. ;
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Table 5-1. Corpus for DRT Test
Voicing Nasality Sustention
veal-feel meat-beat vee-bee
bean-peen need-deed sheet~cheat
ZooO-sue moot-boot foo-pooh
dune-tune news-dues shoes~choose
gin-chin mitt-bit vill~-bill
dint-tint rip-dip thick~tick
vole-foal moan-bone those~doze
goat-coat note-dote though-dough
zed-said mend-bend then-den
dense~tense neck-deck fence~-pence
vault~-fault moss-boss thong-tong
daunt-taunt gnaw-daw shaw-chaw
vast-fast mad-bad than-dan
gaff-calf nab-bab shad-chad
jock-chock mom-bomb von-bon
bond-pond knock~dock vox-box
Sibilation Graveness Compactness
zee~-thee weed-reed yield-wield
cheep-keep peak-teak key-tea
juice-goose moon-noon COOp-poop
chew-coo pool-tool you-rue
jilt-guilt bid~did hit-fit
sjing-thing fin~thin gill-dill
joe-go bowl-dole ghost~boast
sole-thole fore-thor show-so
jest-guest met~-net keg-peg
chair-care pent-tent yen-wren
jaws-gauze fought-thought yawl-wall
saw-thaw bong-dong caught-taught
jab-gab bank-dank gat-bat
sank-thank fad-thad shag-sag
jot-got wad-rod hop-fop
chop-cop pot-tot got-dot

Dynastat provides analog tapes of male speakers pronouncing
single words in the corpus in randomized order. The tapes are
processed through the experimental transmission conditions to be
tested, and the synthetic speech is submitted to Dynastat's
panel of eight listeners. The panel uses scor. sheets with a
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list of word pairs (from Table 5-1) corresponding to the order

of the single words on the tape. Each listener hears the synthe-
sized version of each word and decides which item it is in the
corresponding word pair.

The SDC phoneme vocoder was tested under four analysis and

synthesis conditions.

1. An edited phonemic transcription, produced by manually
correcting errors in phoneme classification from the
analyzer, was input to the area function dyad
synthesizer.

2. The same edited transcription was input to the terminal
analog synthesizer.

3. A raw phonemic transcription, produced directly from
the analyzer, was input to the area function dyad
synthesizer.

4. The same raw transcription was input to the terminal

analog synthesizer.
Tapes of two male speakers were used: speaker RH saying

List 311B and speaker PK saying List 312A. Test results are
discussed in Section 6.
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6. EVALUATION

The DRT scores for the four transmission conditions are:

Condition 1 - Edited transcription, area function

dyad synthesis 70.6%

Condition 2 - Edited transcription, terminal

analog synthesis 83,52

Condition 3 - Raw transcription, area function

dyad synthesis 35.9%

Condition 4 - Raw transcription, terminal analog

synthesis 42.8%

The scores given are corrected for effects of chance or guessing by an adjusc-
ment of the form

_ _R-W
P o= =SS 100)

where PC is the adjusted percent correct, R is the number of right answers,

W the number of wrong answers and T the total number of items involved. A
right answer is one which the attribute in the original speech (voicing,
nasality, etc.) is perceived to be correctly present or absent in the synthe-

tic speech.

6.1 Condition 1

Figures 6-1 through 6-4 give more detailed analysis of the errors for Condi-
tions 1-4. Figure 60-la compares the adjusted percent correct scores for the
presence and absence of each attribute, and the attribute mean, for Condition
1. Voicing was correctly perceived to be absent in 96.97 of the unvoiced
examples, and correctly perceived to be present in only 21.97% of the voiced
examples (percentages are given in Figure 6-1lc). In other words, under
Condition 1, the presence of voicing is not very successfully transmitted.

The mean score for voicing is about 607%.

Scores for other attributes for Condition 1 are graphed in Figure 6-la with

actual percentages given in Figure 6-lc. Presence of nasality, presence of
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sibilation, and absence of compactness had relatively high scores. That is,
nasals, sibilants and consonants articulated in a relatively front position

in the mouth are correctly perceived for Condition 1.

Presence of voicing, as noted before, and presence of sustention and grave-
ness had the lowest scores. That is, voiced consonants are incorrectly per-
ceived as unvoiced, sustained consonants are perceived as not sustained, and

labial consonants are perceived as non-labial.

Highest mean scores (over 807%) were obtained for nasality, sibilation and
compactness. Lowest mean scores (between 50%-607%) were obtained for voicing,

sustention and graveness.

Figure 6-1b breaks down the errors by attribute, speaker and vowel context,
and also gives overall quality ratings. In general, more errors were made

on transmitted speech of speaker RH (129 total errors) than on speaker PK

(97 total errors), although that pattern is not consistent for each attribute.
The attribute bias indicates the number and bias (towards presence or absence
of the attribute) of the errors for each attribute. For example, for speaker
RH, the panel of eight listeners made 37 choices that voicing was absent when
it was intended to be present, and one choice that voicing was present when it
was intended to be absent. Therefore, the error bias is 37-1=36 toward per-
ceiving unvoiced sounds when a voiced sound was intended. In the other
direction, attribute bias for nasals for speaker RH is 1-20= -19 toward per-

ceiving a nasal sound when a non-nasal sound is intended.

There appears to be no significant effect of vowel context on perception of

presence or absence of the consonant attributes .

Figure 6-1lc gives percentage scores for each attribute and also for sub-types
for each attribute. For example, the overall score for presence of voicing
is 21.9% for Condition 1. However, there is a big difference in the scores
for frictional voiced sounds (e.g., /v,z/) vs. non-frictional voiced sounds
(e.g., /b,d/). Frictional voiced sounds were perceived as voiced in 65.6%

of the cases, and non-frictional voiced sounds were perceived as voiced in
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only -21.9% of the cases (negative percentage is possible because of adjusted j

score; i.e., there were more errors than correct choices). |

Figure 6-1d suggests word pairs that represent problem areas such as voicing

(dense/tense), sustention (vox/box) and graveness (pent/tent).

6.2 Condition 2 |
Figure 6-2a gives scores for Condition 2. Mean scores are higher than for |
Condition 1, and the general pattern is better, although Condition 1 has a i
higher score for absence of voicing, and a better overall pattern for sibila-

tion and compactness. It is interesting to note that for Condition 2 the

RTINS P N S

correct presence of voicing was perceived more often (95.3%) than correct
absence of voicing (67.2), directly opposite to the ranking of voicing scores
for Condition 1. This suggests that characteristics from both synthesizers

might be used to improve transmission of specific attributes.

Figure 6-2b gives a breakdown of errors for Condition 2. There is no
apparent difference in the number of errors for each speaker. The analysis
of errors by item is useful because it shows that there were 13 errors for
item 13 and 12 errors for item 83, out of a total of 38 errors for the com-
pactness attribute. That is, just two items accounted for two-thirds of the
errors for that attribute. However, the same pattern of errors did not

occur for Condition 1 so it cannot be attributed to the input transcription.

Vowel context appears to have more influence on consonant attribute scores
for Condition 2 than for Condition 1, with differences in vowel correspon-

ding to a range of 66.7% to 93.87 in mean correct scores across attributes.

Figure 6-2c gives the scores by sub-type of attribute. One set of scores

which showed considerable variation by sub-type was for absence of voicing,

P e o ——

with an overall correct score of 67.27%, but a drop to 34.47 for correct

absence of voicing in frictional unvoiced sounds (e.g., /f,s/), and an

‘ increase to 1007 for correct absence of voicing in non-frictional unvoiced

sounds (e.g., /p,t/).
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Figure 6~2d suggests word pairs which represent problem areas for Condition 2

such as the voicing attribute for friction sounds (gin/chin) and the compact-

ness attribute (key/tea).

6.3 Conditions 3 and 4

The scores for transmission conditions 3 and 4, shown in Figures 6-3 and 6-4,

involving raw transcription output from the analyzer which is input to the
synthesizer, are much lower than for conditions with edited transcriptions,
indicating that errors in analysis are contributing a great deal to the

reduced quality of the synthetic speech.

3 The analysis output is usually over-specific, identifying separate segments

which are merged in an edited transcription. For example, two transcriptions

1 of the word "taut" by speaker RH, with phoneme symbol, and durations are:

Raw Edited
T 11 T 9
AX 10 A0 21
AA 11 N 5
N 6 T T,
B 10

S 6

The analyzer identified two vowels, AX and AA in the same 21 frame (210 msec.)
interval where a single vowel AO was labelled in the edited transcription,

and identified the aspirated final plosive T as a plosive P followed by

considerable friction S.

T

| Further work is needed to smooth the output of the analyzer, and also to

i include phonetic specificity in the synthesizer which might allow graceful

recovery from analysis errors.

Figures 6-3a and 6-4a show the overall pattern of scores for conditions 3 and
4, Scores below 20%, obtained for four attributes for condition 3 and for

two attributes for condition 4, do not appear. Correct presence of the

42
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nasality attribute had a relatively high score (76.67%) for condition 3, as

did presence of sibilation (65.6%) and nasality (64.1%) for condition 4.

Figures 6-3b and 6-4b give a detailed analysis of the errors for conditions
3 and 4, and Figures 6-3c and 6-4b break down the scores by sub-type of
attribute. It is clear that improvements must be made in all areas. Word

pairs which represent problem areas are given in Figures 6-3d and 6-4d.

6.4 Diagnostic patterns

Figure 6-5 shows the mean scores for each attribute for each transmission
condition. Condition 2 is clearly more uniform in the sense that it is less
sensitive to specific attributes, while condition 1 has very good scores on
several attributes and considerably poorer scores on others. Errors in
phoneme classification by the analyzer generally depressed the scores for
conditions 3 and 4, but also reversed the ranking of the presence vs. absence

scores for sibilation and graveness compared with conditions 1 and 2.

To measure the significance of the scores, Student's t-tests were run on each
combination of transmission conditions for each attribute and for the total

DRT scores. Results are shown in Table 6-1.

Table 6-1. Results of t-tests on Scores for Four

Transmission Conditions

Conditions t for Total Score
1 662 P<.001
1;3 10.39 - P<.00L
1,4 9.63 P<.001
2y 3 21,02  P<,001
2,4 £3.82 P<.001
3,4 1.96

That is, as a measure of distinguishing between transmission conditions, the

DRT scores are highly significant except for comparison of conditions 3 and 4.
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Condition 1, Edited transcription, area function dyad synthesis
Condition 2, Edited transcription, terminal analog synthesis
Condition 3, Raw transcription, area function dyad synthesis

Condition 4, Raw transcription, terminal analog synthesis

Figure 6-5. DRT Scores for Four Transmission Conditions
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7. SUMMARY AND RECOMMENDATIONS

A phoneme vocoder capable of voice transmission at rates lower than 200 bps

has been developed which achieved DRT scores of over 80% for two male speakers
using terminal analog synthesis, and over 70% using an area function dyad
synthesis approach. These scores assumed accurate phoneme transcription as
output of the analysis and input to the synthesis. When errorful transcrip-
tions, representing actual analysis output, were used, DRT scores dropped

to about 40%.

It is obvious that improvements must be made to the analysis and phoneme
classification scheme. One tool that can be used is regression analysis of
acoustic parameters to determine their relative contribution to the segmen-
tation and labeling process. A data base exists at SDC of accurately tran-
scribed continuous speech utterances, with each phoneme identified and its
time boundaries marked. This corpus could represent ideal values against L

which to match the regression analysis.

Contextual information should also be incorporated into the final labeling ’
procedure. Currently the only relevant context used by the labeler is the ‘
precedf;g phoneme, but more global context would be very useful. For

example, an error in labeling on a DRT item involved the word-final phoneme
sequence NPS. By incorporating scores of the phoneme choices (i.e., knowing
which choice is most robust), phonotactic constraints and phoneme probabilities,
the incorrect sequence could be adjusted to MPS, NTS or NT-aspiration, all of

which are possible correct sequences.

Improvements can also be made to the synthesis procedures. The area function
dyad synthesizer is designed to be flexible enough to handle phonetic specifi-
city, so that sound units other than phoneme level units, such as the burst
components of stops or the off-glides of diphthongs, can be entered into the
dyad table. Interpolation over such points should more closely approximate

actual speech than current interpolation over phoneme points only.

Modifications to the terminal analog synthesizer are also available and allow

more variable acoustic parameters, such as nasal zeroes and formant bandwidths,
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E than the version used in the current study. The resulting synthetic speech
waveforms should more closely represent actual speech waveforms because the

production mechanism is more accurately modeled.

The development of the SDC phoneme vocoder has demonstrated that a low data
rate voice transmission system is available that yields reasonably high scores
on standardized tests such as the DRT. However, substantial improvements

remain to be made to both analysis and synthesis.
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